
Keigo Kimura, Yuzuru Tanaka, and Mineichi Kudo. A fast hierarchical alternating least squares algorithm
for orthogonal nonnegative matrix factorization. In Dinh Phung and Hang Li (eds.), Proceedings of the
Sixth Asian Conference on Machine Learning, volume 39 of Proceedings of Machine Learning Research, pp.
129–141, Nha Trang City, Vietnam, 26–28 Nov 2015. PMLR. URL https://proceedings.mlr.press/
v39/kimura14.html.
Kamran Kowsari, Donald E. Brown, Mojtaba Heidarysafa, Kiana Jafari Meimandi, Matthew S. Gerber,
and Laura E. Barnes. HDLTex: Hierarchical deep learning for text classification. In 2017 16th IEEE
International Conference on Machine Learning and Applications (ICMLA), pp. 364–371, 2017. doi: 10.
1109/ICMLA.2017.0-134.
Kamran Kowsari, Donald E. Brown, Mojtaba Heidarysafa, Kiana Jafari Meimandi, Matthew S. Gerber, and
Laura E. Barnes. Web of science dataset, March 2019. URL https://data.mendeley.com/datasets/
9rw3vkcfy4/6.
Ken Lang. 20 newsgroups, 1997. URL http://qwone.com/~jason/20Newsgroups/.
Daniel Lee and H. Sebastian Seung. Algorithms for non-negative matrix factorization. In T. Leen,
T. Dietterich, and V. Tresp (eds.), Advances in Neural Information Processing Systems, vol-
ume 13. MIT Press, 2000. URL https://proceedings.neurips.cc/paper_files/paper/2000/file/
f9d1152547c0bde01830b7e8bd60024c-Paper.pdf.
Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by non-negative matrix factorization.
Nature, 401(6755):788–791, October 1999. doi: 10.1038/44565. URL https://doi.org/10.1038/44565.
Chih-Jen Lin. Projected gradient methods for nonnegative matrix factorization. Neural Computation, 19
(10):2756–2779, October 2007. doi: 10.1162/neco.2007.19.10.2756. URL https://doi.org/10.1162/
neco.2007.19.10.2756.
Xihui Lin and Paul C. Boutros. Optimization and expansion of non-negative matrix factorization. BMC
Bioinformatics, 21(1), January 2020. doi: 10.1186/s12859-019-3312-5. URL https://doi.org/10.1186/
s12859-019-3312-5.
Haifeng Liu, Zhaohui Wu, Xuelong Li, Deng Cai, and Thomas S. Huang. Constrained nonnegative matrix
factorization for image representation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
34(7):1299–1311, 2012. doi: 10.1109/TPAMI.2011.217.
Laura Muzzarelli, Susanne Weis, Simon B. Eickhoff, and Kaustubh R. Patil. Rank selection in non-negative
matrix factorization: systematic comparison and a new MAD metric. In 2019 International Joint Con-
ference on Neural Networks (IJCNN), pp. 1–8, 2019. doi: 10.1109/IJCNN.2019.8852146.
Art B. Owen and Patrick O. Perry. Bi-cross-validation of the SVD and the nonnegative matrix factorization.
The Annals of Applied Statistics, 3(2), June 2009. doi: 10.1214/08-aoas227. URL https://doi.org/10.
1214/08-aoas227.
V. Paul Pauca, Farial Shahnaz, Michael W. Berry, and Robert J. Plemmons. Text mining using non-
negative matrix factorizations. In Proceedings of the 2004 SIAM International Conference on Data Mining.
Society for Industrial and Applied Mathematics, April 2004. doi: 10.1137/1.9781611972740.45. URL
https://doi.org/10.1137/1.9781611972740.45.
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.
Rafael A Rosales, Rodrigo D Drummond, Renan Valieris, Emmanuel Dias-Neto, and Israel T da Silva.
signeR: an empirical Bayesian approach to mutational signature discovery. Bioinformatics, 33(1):8–16,
September 2016. ISSN 1367-4811. doi: 10.1093/bioinformatics/btw572. URL http://dx.doi.org/10.
1093/bioinformatics/btw572.
19