
preconditioner needs to be updated frequently or if the matrix is changing rapidly, this
could be a significant advantage. We believe that the ATS-ILU and ATS-ILUT algorithms
are a promising new approach to computing thresholded ILU factors and that there is further
work to be done in this area.
Acknowledgments. Sandia National Laboratories is a multimission laboratory man-
aged and operated by National Technology and Engineering Solutions of Sandia, LLC.,
a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration under contract DE-NA-0003525.
REFERENCES
[1] An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix,
Mathematics of computation, 31 (1977), pp. 148–162.
[2] H. Anzt, E. Chow, and J. Dongarra, Parilut—a new parallel threshold ILU factorization,
SIAM Journal on Scientific Computing, 40 (2018), pp. C503–C519, https://doi.org/10.1137/
16M1079506, https://doi.org/10.1137/16M1079506.
[3] H. Anzt, T. Ribizel, G. Flegar, E. Chow, and J. Dongarra, Parilut - a parallel threshold ilu
for gpus, in 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
IEEE, May 2019, https://doi.org/10.1109/ipdps.2019.00033, http://dx.doi.org/10.1109/
IPDPS.2019.00033.
[4] M. Benzi, Preconditioning techniques for large linear systems: A survey, Journal of Computational
Physics, 182 (2002), p. 418–477, https://doi.org/10.1006/jcph.2002.7176, http://dx.doi.org/
10.1006/jcph.2002.7176.
[5] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A fresh approach to numerical
computing, SIAM Review, 59 (2017), pp. 65–98, https://doi.org/10.1137/141000671, https:
//epubs.siam.org/doi/10.1137/141000671.
[6] C. Calgaro, J.-P. Chehab, and Y. Saad, Incremental incomplete lu factorizations with applica-
tions, Numerical Linear Algebra with Applications, 17 (2010), pp. 811–837, https://doi.org/
https://doi.org/10.1002/nla.756, https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.
756, https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nla.756.
[7] E. Chow and A. Patel, ”a fine-grained parallel ILU factorization”, SIAM Journal on Scientific
Computing, 37 (2015), pp. C169–C197.
[8] T. Davis, Direcet Methods for Sparse Linear Systems, SIAM, 2006.
[9] T. A. Davis and Y. Hu, The university of florida sparse matrix collection, ACM Transactions on
Mathematical Software, 38 (2011), p. 1–25, https://doi.org/10.1145/2049662.2049663, http:
//dx.doi.org/10.1145/2049662.2049663.
[10] X. Dong and G. Cooperman, A Bit-Compatible Parallelization for ILU(k) Preconditioning, Springer
Berlin Heidelberg, 2011, p. 66–77, https://doi.org/10.1007/978-3-642-23397-5_8, http://dx.
doi.org/10.1007/978-3-642-23397-5_8.
[11] H. C. Edwards, C. R. Trott, and D. Sunderland, Kokkos: Enabling manycore performance porta-
bility through polymorphic memory access patterns, Journal of Parallel and Distributed Com-
puting, 74 (2014), pp. 3202 – 3216, https://doi.org/https://doi.org/10.1016/j.jpdc.2014.
07.003, http://www.sciencedirect.com/science/article/pii/S0743731514001257. Domain-
Specific Languages and High-Level Frameworks for High-Performance Computing.
[12] J. R. Gilbert and T. Peierls, Sparse partial pivoting in time proportional to arithmetic operations,
SIAM Journal on Scientific and Statistical Computing, 9 (1988), pp. 862–874, https://doi.org/
10.1137/0909058, https://doi.org/10.1137/0909058.
[13] M. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, Journal
of Research of the National Bureau of Standards, 49 (1952), p. 409, https://doi.org/10.6028/
jres.049.044, http://dx.doi.org/10.6028/jres.049.044.
[14] D. Hysom and A. Pothen, Efficient parallel computation of ilu(k) preconditioners, in Proceedings of
the 1999 ACM/IEEE conference on Supercomputing, SC ’99, ACM, Jan. 1999, https://doi.org/
10.1145/331532.331561, http://dx.doi.org/10.1145/331532.331561.
[15] P. H
´
enon and Y. Saad, A parallel multistage ilu factorization based on a hierarchical graph decom-
position, SIAM Journal on Scientific Computing, 28 (2006), p. 2266–2293, https://doi.org/10.
1137/040608258, http://dx.doi.org/10.1137/040608258.
[16] T. M. Inc., Matlab version: 9.13.0 (r2022b), 2022, https://www.mathworks.com.
[17] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular
graphs, SIAM Journal on Scientific Computing, 20 (1998), p. 359–392, https://doi.org/10.1137/